

N°12 – jan 2021

Newsletter MIAMIGO et CePiBAc

Actualités sur les anticorps monoclonaux thérapeutiques (AcMo)

LES ANTI-PCSK9 : OK pour le remboursement, sous conditions ...

Source : Journal Officiel de la République Française, du 28 et 30 juillet 2020.

La prescription sur ordonnance de médicaments d'exception d'anticorps anti-PCSK9 est maintenant éligible au remboursement par l'Assurance Maladie en prévention secondaire des complications de l'athérosclérose dans les situations suivantes :

Evolocumab (REPATHA®)

Adultes à très haut risque cardiovasculaire, présentant un antécédent d'infarctus du myocarde, d'accident vasculaire cérébral non hémorragique et/ou d'artériopathie oblitérante des membres inférieurs symptomatique,

- ayant un cholestérol non contrôlé (LDL-c ≥ 0,7 g/L) malgré un traitement hypolipémiant optimisé comprenant au moins une statine à dose maximale tolérée.
- La dose recommandée est de 140 mg / 15 j SC (SC - stylo injecteur à usage unique).

Alirocumab (PRALUENT®)

- Adultes ayant un antécédent de syndrome coronarien aigu récent (< 12 mois)
- ayant un cholestérol non contrôlé (LDL-c ≥ 0,7 g/L) malgré un traitement hypolipémiant optimisé comprenant au moins une statine à la dose maximale tolérée.
- La dose recommandée est de 150 mg / 15 j SC (stylo injecteur à usage unique).

Prévoir un contrôle du bilan lipidique à 1 mois où on espère une diminution du LDL-c de 50 à 60 %. Les deux anticorps sont également indiqués en cas **d'hypercholestérolémie familiale hétérozygote et homozygote** (filière de soin et expertise coordonnée au CHRU par le Pr Pierre Henri Ducluzeau).

POINT SUR LES AcMo DANS LE TRAITEMENT DU VIH

L'objectif d'une immunothérapie efficace dans l'infection au VIH serait celui d'une éradication complète du réservoir viral (immunothérapie « stérilisante ») ou d'une rémission à long terme avec contrôle de la virémie en l'absence de traitement anti-rétrovirus (immunothérapie « fonctionnelle »). La difficulté de l'éradication du VIH est due à la latence du VIH « caché » dans les lymphocytes T CD4+ mémoires, eux-mêmes « cachés » dans de nombreux tissus grâce à l'expression du CCR5 et d'autres phénomènes d'échappement immunitaire, impliquant notamment les points de contrôle immunitaires.

L'infection au VIH est caractérisée par une réponse immunitaire souvent adéquate mais insuffisante pour contrôler la maladie, essentiellement du fait de la capacité du virus à muter afin d'échapper à la réponse immunitaire. Cependant, chez certains patients, des rémissions prolongées, c'est-à-dire de type fonctionnel, ont été observées grâce à des anticorps neutralisants dirigés contre les protéines de l'enveloppe virale ('broadly neutralizing antibodies'), ouvrant la voie au développement d'anticorps thérapeutiques « neutralisants ». L'ibalizumab (TROGARZO®), un anticorps « neutralisant » contre le VIH, a obtenu une AMM en septembre 2019. Cet anticorps monoclonal humanisé de type IgG4 est dirigé contre le domaine 2 des CD4 et, par sa liaison, il empêche le VIH-1 d'infecter les lymphocytes T

CD4+. Il est indiqué en association avec les traitements antirétroviraux chez les adultes infectés par le VIH-1 multirésistant. Plusieurs autres anticorps « neutralisants » sont en cours d'étude, dont un (PRO140) déjà en phase 3 (Tableau 1). Ces anticorps ciblent soit différents domaines du CD4 sur les lymphocytes T, soit le CCR5, soit le VIH lui-même.

Tableau 1 : Essais cliniques évaluant AcMo dans l'infection au VIH

nom	Cible	Туре	Phase	Etudes	Patients	publications
Ibalizumab	CD4 dom2	IgG4	3	8	Patients infectés par le	
					VIH multirésistant en	
					association avec le TARV	
UB-421	CD4	lgG1*	2	4	Patients VIH avec TARV stabilisés; HIV multirésistant	NEJM 2019; 380:1535-1545.
	dom1	<u> </u>			Patients infectés par le	HIV Clin Trials
PRO 140	CCR5	IgG4	2/3	13	VIH	2018;19(3):85-93.
Vedolizumab	Intégrine	lgG1 κ	2	1	Patients infectés par VIH sous TARV cliniquement stable	BMJ Open. 2020; 10:e041359.
3BNC117	VIH	lgG1	2	8	Volontaires sains et patients	Antibodies
3BNC117-LS*	Gp120	K	2	5	infectés par VIH	(Basel). 2020;9(3):36.
VRC-HIVMAB091-	VIH		1	1	Volontaires sains	
00-AB(N6LS)	Gp120					
VRC07-523-LS	VIH Gp120		2	11	Volontaires sains et patients	Lancet HIV 2019;
					infectés par VIH	6(10): e667-e679.
VRC01 VRC01-LS*	VIH Gp120	lgG1	2	14 3	Adultes infectés par VIH,	Lancet HIV. 2019; 6(5): e297-e306.
			1		couples mère-enfant et volontaires sains	
					Adultes infectés par VIH,	
PGDM1400	VIH Gp120		1/2	3	couples mère-enfant et	
					volontaires sains	
10-1074	VIH	IgG1	2	6		
10-1074-LS*	V3 glycan	λ	2	3	Volontaires sains et patients	Antibodies (Basel)
PGT121	VIH	In C 1	2	4	infectés par VIH	2020; 9(3):36.
PGT121.414.LS*	V3 glycan	lgG1	1	1		
KD-247	VIH	IaC1	1	1	Infection asymptomatique	
	V3 glycan	lgG1			par le VIH sans TARV	
C2F5, C2G12,	VIH	lgG1	2	1	Infection précoce par le VIH	
and C4E10		1901		•	en association avec le TARV	
P2G12	VIH		1	2	Volontaires sains	
CAP256V2LS	VIH		1	1	Volontaires sains	
10E8.4/iMab	VIH		1	1	Volontaires sains et patients infectés par VIH	Cell. 2016; 165:1621-31.
10E8VLS	VIH		1	1	Volontaires sains	

^{*} Fc modifié pour augmenter l'affinité au FcRn ; TARV : 'thérapie antirétrovirale'

Suivi Thérapeutique Pharmacologie (STP) AcMo

Effet d'un programme de mise en pratique large du STP proactif des anti-TNF chez les patients pédiatriques atteints de maladies inflammatoires de l'intestin

John L. Lyles et al. Inflamm Bowel Dis, 2020 May 25;izaa102

A ce jour, il n'existe pas de recommandation claire en ce qui concerne le STP des anti-TNF dans les maladies inflammatoires de l'intestin chez l'enfant. Une équipe académique du *Children's Hospital Medical Center* (CCHMC, Cincinnatti, Ohio, USA) spécialisée dans les maladies inflammatoires chroniques de l'intestin (MICI) de l'enfant, a étudié si un programme précis et défini de STP des anti-TNF au sein de leur centre de gastroentérologie pédiatrique améliorerait l'efficacité du traitement.

Ces auteurs ont donc mis en place un STP proactif des anti-TNF, c'est-à-dire avec mesure systématiques de leurs concentrations sanguines, dans le but d'obtenir une concentration minimale d'anti-TNF ≥ 5 mg/L. L'évaluation de l'efficacité du STP proactif a été déterminée chez 206 patients, 22 et 52 semaines après initiation du traitement. L'évaluation de l'intérêt du STP proactif a été réalisée par comparaison historique chez 108 patients n'en ayant pas bénéficié.

Les chercheurs ont constaté que le STP proactif permettait d'augmenter le taux de rémission de presque 20%, en diminuant fortement le risque de développer des anticorps anti-médicament (odds ratio 0,18, IC à 95% [0,09-0,35] P < 0,001).

Cette étude a des limites méthodologiques, notamment liées au choix (historique) du groupe contrôle. Elle suggère qu'un programme de STP proactif des anti-TNF avec des recommandations précises pourrait améliorer leur efficacité.

Anticorps thérapeutiques et grossesse

Les anticorps monoclonaux thérapeutiques (AcMo) sont majoritairement des immunoglobulines de type 1 (IgG1). Le récepteur néonatal de la portion Fc des immunoglobulines (FcRn) appartient à la famille des récepteurs CMH classe 1. Exprimé dans la majorité des types cellulaires, il a été découvert il y a plusieurs décennies lors de l'étude du transfert des IgG de la mère au fœtus. Il est non seulement responsable du recyclage des AcMo dans le sérum et donc de leur longue demi-vie (environ 3 semaines), mais aussi de leur transport (transcytose) dans la plupart des tissus (Magdelaine Med Sci 2009). Lors de la vie fœtale, l'expression du FcRn commence dès la 14^e semaine gestationnelle dans les cellules syncytiotrophoblastiques du placenta et ne cesse d'augmenter jusqu'à l'accouchement (Kane Gastroenterology 2009). Au-delà de la 14^e semaine, tous les AcMo et protéines de fusion pourvus d'une portion Fc sont susceptibles d'être transférés de la mère au fœtus. A la naissance, des concentrations sériques d'AcMo IgG1 (rituximab, infliximab, adalimumab) souvent plus importantes chez le fœtus que chez la mère sont rapportées (Friedrichs Hematologica 2006, Julsgaard Gastroenterology 2016). Par conséquent, l'administration des AcMo pendant la grossesse est problématique. Elle est déconseillée pour les anti-TNF et le rituximab (risque d'immunodépression transitoire du nouveau-né), voire contre-indiquée pour d'autres lorsqu'ils ciblent des voies de croissance essentielle, comme le cetuximab (anti-EGFR) ou le bevacizumab (anti-VEGF). De façon intéressante, l'élimination des AcMo semble beaucoup plus lente chez le fœtus, le nouveau-né et la femme enceinte, pour qui des demi-vies de 4 à 5 semaines sont rapportées (Friedrichs Hematologica 2006, Julsgaard Gastroenterology 2016). Cela pourrait être dû à une plus forte expression du FcRn comparée aux adultes. On note toutefois que seuls les femmes enceintes et nouveau-nés présentent une élimination des AcMo ralentie, cette élimination étant plus rapide chez les sujets pédiatriques que chez les adultes (Bensalem Clin Pharmacokinet 2020).

NOUVEAUX AcMo / BIOSIMILAIRES: AMM 2020

DCI	Nom	Laboratoire	Cible	Structure	Indication
Belantamab mafodotin	BLENREP [®]	GSK	ADC contre le BCMA	lgG1 к	Myélome multiple
Brolucizumab	BEOVU [®]	Novartis Europharm Limited	VEGF-A	scFv	Dégénérescence maculaire liée à l'âge (DMLA)
Crizanlizumab	ADAKVEO [®]	Novartis Europharm Limited	P sélective	lgG2 k	Prévention des crises vaso- occlusives (COV) récurrentes chez les patients âgés de > 16 ans atteints de drépanocytose
Isatuximab	SARCLISA®	Sanofi-aventis	CD38	IgG1	Myélome multiple
Obiltoxaximab	Obiltoxaximab SFL [®]	SFL Pharmaceuticals Deutschland GmbH	antigène protecteur (AP) de B. anthracis	IgG1	Maladie du charbon
Polatuzumab Vedotin	POLIVY®	Roche Registration GmbH	CD79b	lgG1	Lymphome diffus à grandes cellules B (LDGCB) en rechute/réfractaire
Adalimumab	AMSPARITY [®]		TNF-α		Biosimilaire
Bevacizumab	AYBINTIO® EQUIDACENT®		VEGF-A		Biosimilaire
Rituximab	RUXIENCE®		CD20		Biosimilaire
Trastuzumab	ZERCEPAC®		HER2		Biosimilaire

Source: http://www.ema.europa.eu/ema

RETOUR SUR L'ETUDE « SAVE »

Effect of **SA**It diet and various biomarkers on blood pressure and proteinuria during **VE**GF inhibition

Promoteur : CHRU de Tours

Investigateur coordonnateur : Pr Theodora Bejan-Angoulvant

- ✓ Etude non interventionnelle, prospective, de patients traités par bevacizumab pour un cancer solide rentrant dans le cadre de l'AMM de l'AVASTIN[®].
- ✓ Objectif principal : étudier la relation entre la consommation de sel et différents biomarqueurs, et la variation de la pression artérielle mesurée pendant les 3 premières perfusions de bevacizumab.

- → A ce jour : 22 inclusions
- → Dont 3 sorties d'étude prématurées
- → Nombre de patients à inclure pour atteindre l'objectif : 8 inclusions
- → Fin de la période d'inclusion : 04/2021

Contacts:

Amélie Legrand (MIAMIGO) 02 34 37 96 51 a.legrand@chu-tours.fr Céline Desvignes (CePiBAc) 02 47 47 39 61

c.desvignes@chu-tours.fr